3. 某超市研究销售记录发现买啤酒的人很大概率也会买尿布,这属于数据挖掘的哪类问题?

  • A 关联规则发现
  • B 聚类
  • C 分类
  • D 自然语言处理

A 关联规则发现

关联规则就是有关联的规则,形式是这样定义的:两个不相交的非空集合X、Y,如果有X-->Y,就说X-->Y是一条关联规则。在题目的例子中,我们发现购买啤酒就一定会购买尿布,{啤酒}-->{尿布}就是一条关联规则。关联规则的强度用支持度(support)和自信度(confidence)来描述。
支持度的定义:support(X-->Y) = |X交Y|/N=集合X与集合Y中的项在一条记录中同时出现的次数/数据记录的个数。例如:support({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/数据记录数
自信度的定义:confidence(X-->Y) = |X交Y|/|X| = 集合X与集合Y中的项在一条记录中同时出现的次数/集合X出现的个数 。例如:confidence({啤酒}-->{尿布}) = 啤酒和尿布同时出现的次数/啤酒出现的次数。 confidence({尿布}-->{啤酒}) = 啤酒和尿布同时出现的次数/尿布出现的次数。
这里定义的支持度和自信度都是相对的支持度和自信度,不是绝对支持度,绝对支持度abs_support = 数据记录数N*support。
支持度和自信度越高,说明规则越强,关联规则挖掘就是挖掘出满足一定强度的规则。

B 聚类

Clustering(聚类): 简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习)。聚类分析目的在于将相似的事物归类,同一类中的个体有较大的相似性,不同类的个体差异性很大。

C 分类

Classification (分类): 一个 classifier会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做 supervised learning (监督学习)。所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。 常用的分类算法包括:决策树分类法,朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearest neighbor,kNN),模糊分类法等。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。

D 自然语言处理

自然语言处理的主要应用范畴包括:文本朗读(Text to speech)/语音合成(Speech synthesis) 语音识别(Speech recognition) 中文自动分词(Chinese word segmentation) 词性标注(Part-of-speech tagging) 句法分析(Parsing) 自然语言生成(Natural language generation) 文本分类(Text categorization) 信息检索(Information retrieval) 信息抽取(Information extraction) 文字校对(Text-proofing) 问答系统(Question answering)等

选择A,关联规则发现

geekcircle            updated 2018-05-15 02:07:23

results matching ""

    No results matching ""